Sabtu, 05 Juli 2014

Diagram Venn dan Bilangan



  • Bilangan adalah suatu konsep matematika yang digunakan untuk pencacahan dan pengukuran. Simbol ataupun lambang yang digunakan untuk mewakili suatu bilangan disebut sebagai angka atau lambang bilangan. Dalam matematika, konsep bilangan selama bertahun-tahun lamanya telah diperluas untuk meliputi bilangan nol, bilangan negatif, bilangan rasional, bilangan irasional, dan bilangan kompleks.


  • Himpunan adalah kumpulan dari objek-objek tertentu yang tercakup dalam satu kesatuan dengan keterangan yang jelas. Untuk menyatakan suatu himpunan digunakan huruf kapital A, B, C, … sedangkan untuk menyatakan anggotanya digunakan huruf kecil a, d, c, …
Terdapat 4 cara untuk menyatakan suatu himpunan :
  1. Enumerasi, yaitu dengan mendaftarkan semua anggotanya yang diletakan didalam sepasang tanda kurung kurawal dan diantara setiap anggotanya dipisahkan dengan tanda koma. Contoh : A = {a, i, u, e, o}.
  2. Simbol baku, yaitu dengan menggunakan simbol tertentu yang telah disepakati. Contoh : P adalah himpunan bilangan bulat positif dan R adalah himpunan bilangan riil.
  3. Notasi pembentukan himpunan, yaitu denganmenuliskan ciri-ciri umum atau sifat-sifat umum dari anggota. Contoh : A = {x|x adalah himpunan bilangan bulat positif}
  4. Diagram venn, yaitu dengan menyajikan himpunan secara grafis dengan tiap-tiap himpunan digambarkan sebagai lingkaran dan memiliki himpunan semesta yang digambarkan dengan segi empat. Contoh :diagram venn

Untuk lebih memahami diagram venn berikut ini beberapa contoh diagram venn
Diagram-Venn1
 

Diagram-Venn2
 

  • Operasi Himpunan dalam diagram venn
Diagram-Venn3


Diagram-Venn4

Diagram-Venn5


Diagram-Venn6


  • Hukum dan Sifat-sifat Operasi Himpunan
Operasi-Himpunan

  •  Jenis-jenis himpunan
Jenis-Himpunan

  •  Perkalian Himpunan ( Cartesian Product )
Jika kita menemukan soal tentang perkalian himpunan kita dapat mengerjakan seperti contoh berikut :
Notasi:
A x B = …???
A = {a,b,c}
B = {p,q}
A x B = {(a,p),(a,q),(b,p),(b,q),(c,p),(c,q)}
Catatan:
(a,b) = (a,b)
(a,b) K (b,a)

0 komentar:

Posting Komentar

Template by:

Free Blog Templates